Alveolar bone resorption caused by trauma or periodontal diseases has been a challenge for both dental clinicians and researchers. In this study, we investigate the bone regeneration through direct trans-differentiation from non-osteogenic cells to osteogenic cells by epigenetic modification. HGFs or 3T3-L1 cells treatment with 5'-aza-dC induced demethylation in the hypermethylated CpG islands of the osteogenic lineage marker genes RUNX2 and ALP, and subsequent BMP2 or Wnt3a treatment successfully drove to the osteoblasts lineage. Cell morphological changes viewed under microscopy and alkaline phosphatase and alizarin red S staining confirmed the osteoblastic change mediated by epigenetic modification as did real-time PCR, MSP, and ChIP assay, which demonstrated the altered methylation patterns in the RUNX2 and ALP promoter regions and their effect on gene expression. In vivo data indicated ectopic bone formation and increased bone volume, furthermore, RNA seq and MBD seq proved the process of trans-differentiation via epigenetic modification.

Collectively, our results indicate that epigenetic modification permits direct programming of non-osteoblasts into osteoblasts, suggesting that this approach might open a novel therapeutic avenue in alveolar bone regeneration.

Trans-differentiation via epigenetic approach for alveolar bone regeneration

in vitro, in vivo, and in silico studies

Young-Dan Cho1,2, Yang-Jo Seol1, Yong-Moo Lee1, William V. Giannobile2, Young Ku1

1Department of Periodontology, Seoul National University School of Dentistry, Seoul, Korea
2Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, MI, USA

I. Epigenetics

II. Induced pluripotent stem cell vs. Trans-differentiation

III. Strategy for trans-differentiation

Experimental Works Flow

Methods & Results

Fig. 2. 5'-aza-dC and sequential bone morphogenetic protein 2 (BMP2) treatment stimulate osteogenesis

Adipocyte -> Osteoblast

Fig. 1. CpG methylation state in the promoter correlates with gene expression level

Fibroblast -> Osteoblast

Fig. 3. 5'-aza-dC and sequential Wnt3a mitigate osteoporotic character in old mice

Fig. 4. Genome-wide analysis: Epigenetic modification regulates gene expression